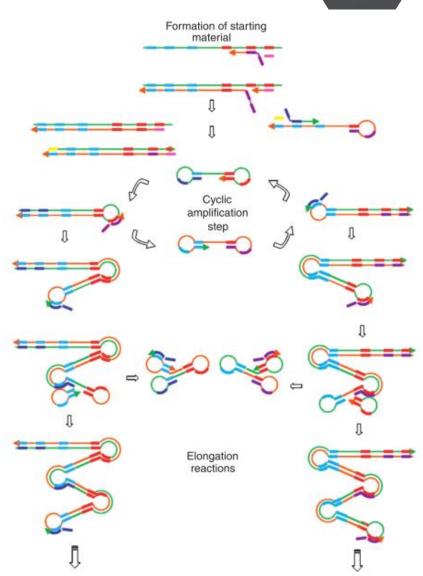


RAPIDIA FIELD **Validation of AMPlite**

Dr Veronica Fowler Madrid May 2015

Detection platforms and technologies

- Largely driven by advances in human "personal" medicine
- <u>Immunoassays</u>
 - Lateral-flow devices
- Molecular tests
 - Mobile rRT-PCR
 - Local laboratory rRT-PCR
 - **Isothermal tests**



www.pirbright.ac.uk

Loop-Mediated Isothermal Amplification:

The process

- Strand-displacing polymerases
- Isothermal amplification
- Four-six primers
- Formation of loop structures
- Rapid amplification
- Autocycling
- Double-stranded, multi-sized amplicons
- Reverse transcription (RT-LAMP)

Low cost, simple equipment

The Problem:

Field deployment of RT-LAMP

www.pirbright.ac.uk

Lyophilised singleplex RT-LAMP:

Analytical sensitivity comparable to rRT-PCR

- Laboratory concordance (rRT-PCR/Wet/Dry)
- Dilution series of RNA standard
- Comparison with the gold-standard Callahan rRT-PCR

		Copy number of RNA standard							
RT-LAMP (RNA standard)*		10 ⁶	10 ⁵	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰	Negative
rRT-PCR		+	+	+	+	+	+	+/-	-
Wet	rRT-LAMP	+	+	+	+	+	+	-	-
reagents	RT-LAMP-LFD								
Lyophilised	rRT-LAMP	+	+	+	+	+	+	+/-	-
reagents	RT-LAMP-LFD		1						
							Test Control		

Expansion of sample preparation:

Cattle samples from

From the laboratory to the field

From Jose Gonzales

	ental infection	Serum samples				
		0dpc	1dpc	2dpc	3dpc	
1	RT-PCR	-	+	+	+	
	Extracted RNA	-	+	+	+	
∞DT LANAD	Neat	-	t 1dpc 2dpc + +	IN		
rRT-LAMP	1 in 5 dilution	-	+	+ + N IN	+	
	1 in 10 dilution	-	+	+	+	

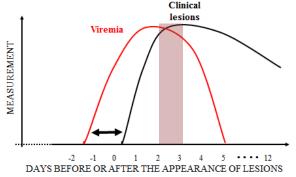
OP* fluid samples

0dpc	1dpc	2dpc	3dpc
-	+	+	+
-	+	+	+
NS	NS	NS	+
NS	+	+	+
-	+	+	+

*oesophageal-pharyngeal (probang)

IN: Inhibitory

NS: Non-specific amplification



Detection of FMDV in clinical animals:

2 days after the appearance of clinical signs

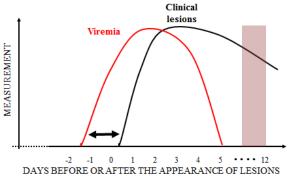
King et al., 2012 (data from Alexandersen et al. 2003)

Animal ear tag

		7803	7804	7805	7806	Negative**
	Mobile rRT-PCR*	+	+	+	+	-
Foot Epithelium	rRT-LAMP	+	+	+	+	-
	RT-LAMP-LFD					
	rRT-LAMP	+	+	+	+	-
Serum	RT-LAMP-LFD					
OD (II : I	rRT-LAMP	+	+	+	+	-
OP fluid	RT-LAMP-LFD					
					Test Control	

Epithelial samples positive by rRT-PCR were also positive by Ag-LFD

**Negative water control


^{*}mobile rRT-PCR is $^{\sim}$ one log less sensitive than the OIE laboratory gold standard

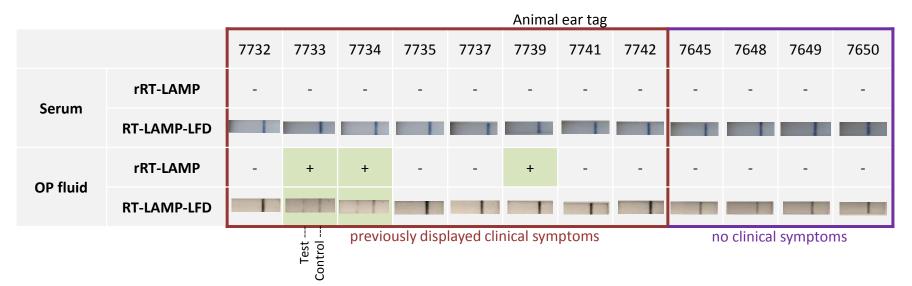
Detection of FMDV in late infection:

10 days after the appearance of clinical signs

	Animai ear tag							
		7807	7808	7809	7810	7812	Negative	
	Mobile rRT-PCR*	+	+	+	+	+	-	
Mouth Epithelium	rRT-LAMP	+	+	+	+	+	-	
	RT-LAMP-LFD		11					
	rRT-LAMP	-	-	-	-	-	-	
Serum	RT-LAMP-LFD							
OP fluid	rRT-LAMP	+	-	+	+	-	-	
Or fluid	RT-LAMP-LFD							

Animal partag

Control ---


Epithelial samples were all negative on Ag-LFD

*mobile rRT-PCR is \sim one log less sensitive than the OIE laboratory gold standard

King et al., 2012 (data from Alexandersen et al. 2003)

Clinically normal cattle:

ca. 1 month after the appearance of clinical signs

The Solution

RT-LAMP-LFD Closed system

To develop and perform initial validation of closed RT-LAMP device (AMPlite) for detection of FMDV at the penside

What is the AMPlite?

- Closed system to minimise technical input required for assay and to minimise cross-contamination.
- **Inexpensive** heating block with **disposable** consumables.

- Waters et al (2014) singleplex FMDV RT-LAMP assay was modified to incorporate a isothermal mastermix produced by Optigene.
- Analytical sensitivity was assessed using wet and lyophilised reagents, with and without internal control
 primers and control.
- Performance of assay and device was compared against rRT-PCR and real time RT-LAMP/ RT-LAMP-LFD.

AMPlite: Summary and impact

• <u>Test confidence:</u>

Analytical sensitivity for AMPlite is one log less than rRT-PCR using wet reagents Integrated internal control line develops to confirm test negative

Multiplex RT-LAMP (RN	A standard)	10 ⁰	10 ¹	10 ²	10³	104	10 ⁵	10 ⁶
	RT-LAMP	-	+	+	+	+	+	+
Wet	Amplite	-	-	+	+	+	+	+
	rRT-PCR	-/+	+	+	+	+	+	+
	RT-LAMP	-	+	+	+	+	+	+
Lyophilised	Amplite	-	+/-	+	+	+	+	+
	rRT-PCR	+/-	+	+	+	+	+	+

Test simplicity:

AMPlite LAMP can be performed <u>directly on diluted clinical</u> samples and; visualised at end point molecular LFD's with minimum user interference. Epithelium suspensions can be made *in situ* using Svanova Ag extraction vials.

• <u>Test rapidity</u>: sample processing to test completion within <u>30 minutes</u>.

AMPlite: Summary and impact

• <u>Test robustness:</u>

The robustness of the AMPlite was tested in Kenya in December 2014 with power provided via a vehicle auxiliary.

Epithelial and serum samples were collected and assayed on the AMPlite and compared to real time RT-LAMP and RT-LAMP-LFD run on Genie II.

Complete concordance was observed between AMPlite and real time RT-LAMP and RT-LAMP-LFD run on Genie II. More samples will be assayed in Nepal in 2015.

Cow	Sample	(a) RT-LAMP	(b) RT-LAMP-LFD	(c) AMPlite
4	Epithelium	+	+	+
4	Serum	-	-	-
9	Epithelium	+	+	+

Acknowledgements

- Emma Howson and Miki Madi
- WRLFMD Virology Team (Dr. Valerie Mioulet)
- **EuFMD Team**
- University of Glasgow
- Rapidia field consortium
- Livestock owners in East Africa

